

Page: 1 of 16

Test Report

Client Information:

Applicant: GuangZhou Ostec Electronic Technology Co., Limited

Address: 2 of No.8 West Lane, Jiangcheng Road, Bangjiang East Village, Dalong

Street, Panyu District, Guangzhou City, Guangdong, P.R. China

Sample Name: Intelligent All-In-One Machine

Sample Model: TC500, Additional models see page 2

Brand Name: Kopa

Date of Receipt: 2020-08-06

Date of Test: 2020-08-13

Test Method: With reference to IEC 62321: 2013

1) Section 6: Screening by X-ray Fluorescence Spectrometry (XRF)

2) Chemical test:

Test Requested	Result
As specified by client, according to RoHS Directive 2011/65/EU with amendment (EU) 2015/863 to test Lead (Pb), Cadmium (Cd), Mercury(Hg), Hexavalent Chromium(Cr(VI)), Polybrominated Biphenyls(PBBs), Polybrominated Diphenyl Ethers(PBDEs), Phthalates(DBP, BBP, DEHP, DIBP) in the submitted sample(s)	Pass

Tested samples: Screening components of submitted samples.

Test/Witness Engineer

Approved & Authorized

Andy Enaug

Page: 2 of 16

Additional models:

TC200, TC200(N), TC200(L), TC500(N), TC500(L), TC800, TC800(N), TC800(L), TC1200, TC1200(N), TC1200(L), HD210-M, HD510-M, HD810-M, HD1210-M, HD210-M(N), HD510-M(N), HD810-M(N), HD1210-M(N), HD210-M(L), HD510-M(L), HD810-M(L), HD1210-M(L), AC1200, HD210-MN, HD210-ML, TE500, TE500N, TE500L, TE800, TE800N, TE800L, TE1200, TE1200N, TE1200L, TE2000, TE2000N, TE2000L, WF01A, VM3500, NA001, MF211-M, MF511-M, MF811-M, MF1211-M, MF211-M(N), MF511-M (N), MF811-M(N), MF1211-M(N), MF211-M(L), MF511-M(L), MF811-M(L), MF1211-M(L), MC211-M04, MC511-M04, MC811-M04, MC1211-M04, MC211-M04N, MC511-M04N, MC811-M04N, MC1211-M04N, MC211-M, MC511-M, MC811-M, MC1211-M, HD32, HD32-S, HC52-H, HC62; CE210, DP125, JX200, JX500, JX800, JX1200, HE210-M, HE510-M, HE810-M, HE1210-M, HE210-MN, HE510-MN, HE810-MN, HE1210-MN, HE210-ML, HE510-ML, HE810-ML, HE1210-ML, HE210-MZ, HE510-MZ, HE810-MZ, HE1210-MZ, TE800Z, TE1200Z, HE510, HE810, HE1210, HE2010, HE1210-M, HE2010-M, HE510-N, HE810-N, HE1210-N, HE1210-MN, HE2010-N, HE2010-MN, HE510-L, HE810-L, HE1210-L, HE1210-ML, HE2010-L, HE2010-ML, HE510-Z, HE810-Z, HE1210-Z, HE1210-MZ, HE2010-Z, HE2010-MZ

Web: www.hx-lab.com

Page: 3 of 16

Tested Sample/Part Description

No.	Component Description
1	Shell
2	Tact Switch
3	PCB
4	Resistor
5	Capacitor
6	NPN triode
7	Triode
8	MOS transistor
9	NMOS transistor
10	TVS tube
11	Self recovery fuse
12	Inductor
13	Common mode inductor
14	ESD Electrostatic diode
15	Magnetic bead
16	IC
17	LED
18	Connector
19	LED button

Web: www.hx-lab.com

Page: 4 of 16

Test Result of XRF

Tooted Item/o)	Result											
Tested Item(s)	1	2	3	4	5	6	7	8	9	10	11	
Lead (Pb)	BL	BL	BL	BL	BL	BL	BL	BL	BL	BL	BL	
Cadmium (Cd)	BL	BL	BL	BL	BL	BL	BL	BL	BL	BL	BL	
Mercury (Hg)	BL	BL	BL	BL	BL	BL	BL	BL	BL	BL	BL	
Total Chromium (Cr)	BL	BL	BL	BL	BL	BL	BL	BL	BL	BL	BL	
Total Bromine (Br)	BL	BL	BL	BL	BL	BL	BL	BL	BL	BL	BL	

Tooted Item(e)	Result									
Tested Item(s)	12	13	14	15	16	17	18	19		
Lead (Pb)	BL	BL	BL	BL	BL	BL	BL	BL		
Cadmium (Cd)	BL	BL	BL	BL	BL	BL	BL	BL		
Mercury (Hg)	BL	BL	BL	BL	BL	BL	BL	BL		
Total Chromium (Cr)	BL	BL	BL	BL	BL	BL	BL	BL		
Total Bromine (Br)	BL	BL	BL	BL	BL	BL	BL	BL		

Page: 5 of 16

(1)Test Method

Tested Item(s)	Test Method	Test Method
Lead (Pb) Cadmium (Cd) Mercury (Hg) Total Chromium (Cr) Total Bromine (Br)	IEC 62321-2:2013, IEC 62321-1:2013, IEC 62321-3-1:2013,	XRF

Remark:

- (a) BL = Below Limit, OL = Over Limit, LOD = Limit of Detection, -- = Not Regulated,
 - 3σ = The reproducibility of analytical instruments
 - X: the region where further investigation is necessary,
 - *=The screened result was found by XRF and further chemical test was suggested
- (b) There are the results on total Br while test items on restricted substances are PBBs and PBDEs. There is the result on total Cr while test item on restricted substances is Cr(VI).
- (c) Results are obtained by EDXRF for primary screening, and further chemical testing by ICP-OES (for Cd, Pb, Hg), UV-Vis (for Cr(VI) and GC-MS (for PBBs, PBDEs) is recommended to be performed, if the concentration exceeds the below warning value according to IEC62321 (unit: mg/kg).

Element	Polymer materials	Metallic materials	Composite materials		
Cadmium (Cd)	BL≤(70-3δ) <x<< td=""><td>BL≤(70-3δ)<x< (130+3δ) ≤OL</x< </td><td colspan="3">LOD<x< (150+3δ)≤ol<="" td=""></x<></td></x<<>	BL≤(70-3δ) <x< (130+3δ) ≤OL</x< 	LOD <x< (150+3δ)≤ol<="" td=""></x<>		
$(130+36) \le OL$ BI $< (700-38) < X <$		BL≤(700-3δ) <x<< td=""><td>BL≤(500-3δ)<x<< td=""></x<<></td></x<<>	BL≤(500-3δ) <x<< td=""></x<<>		
Lead (Pb)	(1300+3δ) ≤OL	(1300+3δ) ≤OL	(1500+3δ) ≤OL		
Mercury (Hg)	BL≤(700-3δ) <x< (1300+3δ) ≤OL</x< 	BL≤(700-3δ) <x< (1300+3δ) ≤OL</x< 	BL≤(500-3δ) <x< (1500+3δ) ≤OL</x< 		
Chromium (Cr)	BL≤(700-3δ) <x< td=""><td>BL≤(700-3δ)<x< td=""><td>BL≤(500-3δ)<x< td=""></x<></td></x<></td></x<>	BL≤(700-3δ) <x< td=""><td>BL≤(500-3δ)<x< td=""></x<></td></x<>	BL≤(500-3δ) <x< td=""></x<>		
Bromine (Br)	BL≤(300-3δ) <x< td=""><td>Not Applicable</td><td>BL≤(250-3δ)<x< td=""></x<></td></x<>	Not Applicable	BL≤(250-3δ) <x< td=""></x<>		

RoHS Requirement

Restricted substances	Limits
Lead(Pb)	0.1%(1000 ppm)
Cadmium(Cd)	0.01%(100 ppm)
Mercury(Hg)	0.1%(1000 ppm)
Chromium(VI)(Cr6+)	0.1%(1000 ppm)
Polybrominated biphenyls(PBBs)	0.1%(1000 ppm)
Polybrominated diphenyl ethers (PBDEs)	0.1%(1000 ppm)

The above limits were quoted from 2011/65/EU with amendment (EU) 2015/863.

Page: 6 of 16

(a)The test result of PBBs, PBDEs

Tested Item	Result(mg/kg)											
rested item	1	2	3	4	5	6	7	8	9	10	11	
Monobromobiphenyl (MonoBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Dibromobiphenyl (DiBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Tribromobiphenyl (TriBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Tetrabromobiphenyl (TetraBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Pentabromobiphenyl (PentaBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Hexabromobiphenyl (HexaBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Heptabromobiphenyl (HeptaBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Octabromobiphenyl (OctaBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Nonabromobiphenyl (NonaBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Decabromobiphenyl (DecaBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Sum of polybrominated Biphenyls(PBBs)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Monobromodiphenyl ether (MonoBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Dibromodiphenyl ether (DiBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Tribromodiphenyl ether (TriBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Tetrabromodiphenyl ether (TetraBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Pentabromodiphenyl ether (PentaBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Hexabromodiphenyl ether (HexaBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Heptabromodiphenyl ether (HeptaBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Octabromodiphenyl ether (OctaBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Nonabromodiphenyl ether (NonaBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Decabromodiphenyl ether (DecaBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Sum of polybrominated diphenyl ethers(PBDEs)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	

Page: 7 of 16

					Res	ult(m	g/kg)	
Tested Item	12	13	14	15	16	17	18	19
Monobromobiphenyl (MonoBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Dibromobiphenyl (DiBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Tribromobiphenyl (TriBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Tetrabromobiphenyl (TetraBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Pentabromobiphenyl (PentaBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Hexabromobiphenyl (HexaBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Heptabromobiphenyl (HeptaBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Octabromobiphenyl (OctaBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Nonabromobiphenyl (NonaBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Decabromobiphenyl (DecaBB)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Sum of polybrominated Biphenyls(PBBs)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Monobromodiphenyl ether (MonoBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Dibromodiphenyl ether (DiBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Tribromodiphenyl ether (TriBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Tetrabromodiphenyl ether (TetraBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Pentabromodiphenyl ether (PentaBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Hexabromodiphenyl ether (HexaBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Heptabromodiphenyl ether (HeptaBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Octabromodiphenyl ether OctaBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Nonabromodiphenyl ether NonaBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Pecabromodiphenyl ether DecaBDE)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Sum of polybrominated diphenyl ethers(PBDEs)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

Web: www.hx-lab.com

Page: 8 of 16

(b) The test result of DBP, BBP, DEHP, DIBP

Tostad Itam(s)	Result											
Tested Item(s)	1	2	3	4	5	6	7	8	9	10	11	
Dibutyl phthalate(DBP)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Benzylbutyl phthalate(BBP)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Di-2-ethylhexyl phthalate(DEHP)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
Diisobutyl phthalate(DIBP)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	

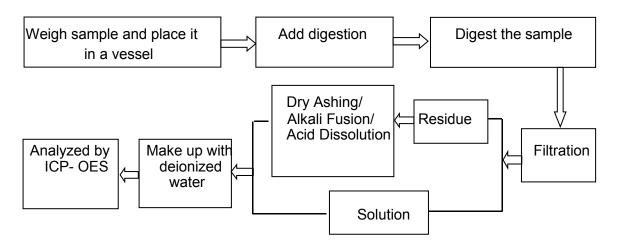
Tootod Itam(a)	Result										
Tested Item(s)	12	13	14	15	16	17	18	19			
Dibutyl phthalate(DBP)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.			
Benzylbutyl phthalate(BBP)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.			
Di-2-ethylhexyl phthalate(DEHP)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.			
Diisobutyl phthalate(DIBP)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.			

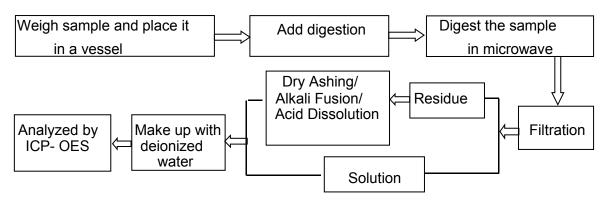
(c) Test Method for Chemical Confirmation

Test Item	Test Method	Test Instrument	MDL (mg/kg)	EU RoHS Limit (mg/kg)
Cadmium (Cd)	IEC 62321-5:2013	ICP-OES	10	100
Lead (Pb)	IEC 62321-5:2013	ICP-OES	10	1000
Mercury (Hg)	IEC 62321-4:2013	ICP-OES	10	1000
Hexavalent Chromium	IEC 62321-7-2:2017 (non-metal)	UV-Vis	10	1000
(Cr(VI))	IEC 62321-7-1:2015 (metal)	UV-Vis	0.1(µg/cm)	1000
Polybrominated Biphenyls (PBBs)	IEC 62321-6:2015	GC-MS	10	1000
Polybrominated Diphenyl Ethers (PBDEs)	IEC 62321-6:2015	GC-MS	10	1000
Phthalates(DBP, BBP, DEHP, DIBP)	IEC 62321-8:2017	GC-MS	50	1000

Remark: MDL = Method Detection Limit

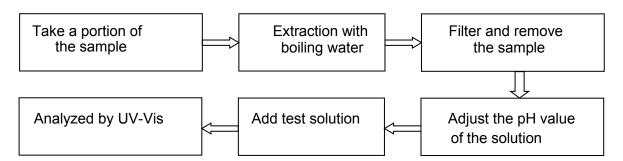
N.D. = Not Detected (<MDL)
mg/kg = ppm = parts per million


RoHS Directive 2011/65/EU based on: Copper alloy containing up to 4% lead by weight.


Page: 9 of 16

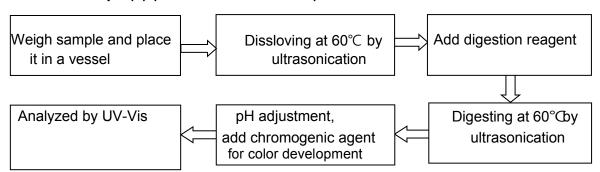
Test Process

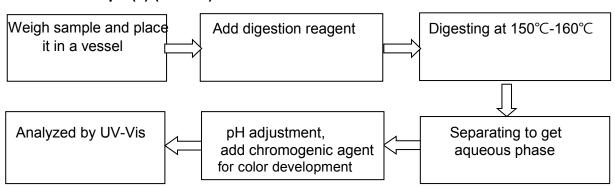
1. Lead(Pb), Cadmium(Cd), Chromium(Cr)



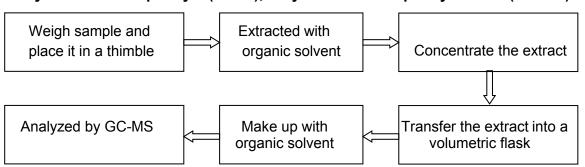
2. Mercury(Hg)

3. Hexavalent Chromium (Cr (VI))


(1) IEC 62321-7-1:2015 Plating/Metal sample(s)

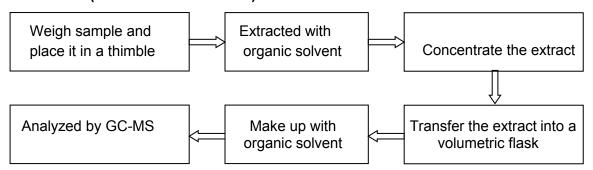


Page: 10 of 16


(2) IEC 62321-7-2:2017 Non-metal sample(s) (Material ABS/PC/PVC)

(3) IEC 62321-7-2:2017 Non-metal sample(s) (Others)

4. Polybrominated Biphenyls (PBBs), Polybrominated Diphenyl Ethers (PBDEs)



Web: www.hx-lab.com

Page: 11 of 16

5. Phthalates(DBP/BBP/DEHP/DIBP)

Remark:

- -Chemical confirmation tests were conducted to verify the inconclusive, Chromium (VI) (Cr⁶⁺), Polybrominated biphenyls (PBBS) and Polybrominated included in this report.
- -As requested by the applicant, only components shown in this report were screened by XFR spectroscopy for 2011/65/EU & (EU) 2015/863, other components were not screened included in this report.

Disclaimers:

This XRF Screening Report tests were reference purposes only. The applicant shall make its/his/her purposes.

The results shown in this XRF screening Report will based on various factors. Including but not limited to, the sample size, thickness, area, surface flatness, equipment parameters and matrix effect (e.g. Plastic, Rubber, Metal, Glass, Ceramic etc.). Further wet chemical pre-treament with relevant chemical equipment analysis are required to obtain quantitative data.

-Photo is included.

Web: www.hx-lab.com

Page: 12 of 16

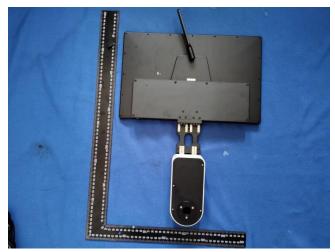
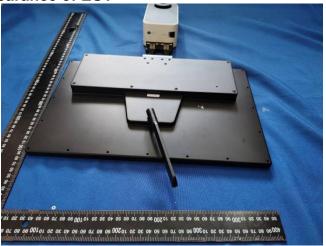

Photograph of Sample

Photo 1-2 Appearance of EUT

Photo 3-4 Appearance of EUT



Page: 13 of 16

Photo 5-6 Appearance of EUT

Photo 7-8 Appearance of EUT

Photo 9-10 Appearance of EUT

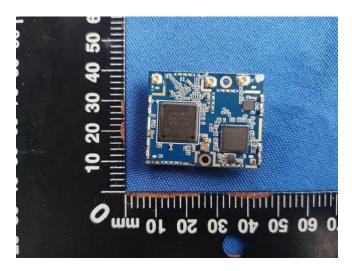
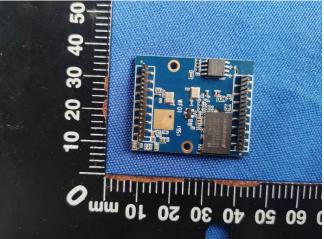

Page: 14 of 16

Photo 11-12 Appearance of PCB

Photo 13-14 Appearance of PCB



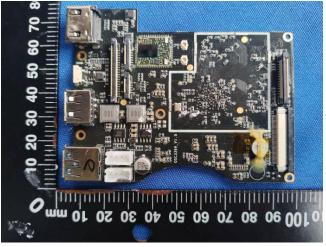


Photo 15-16 Appearance of PCB

Shenzhen HX Detect Certification Co., Ltd.

5/F, Building B15, Zongtai Cultural and Creative Industrial Park, Yintian Creative Park, Xixiang Town, Bao 'an District, Shenzhen

Page: 15 of 16

Photo 17-18 Appearance of PCB

Photo 19-20 Appearance of PCB

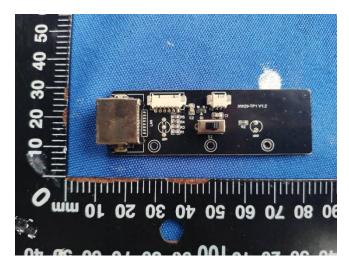
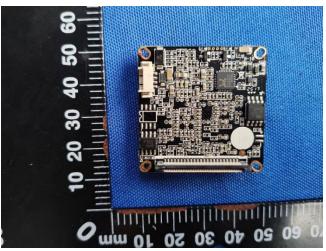
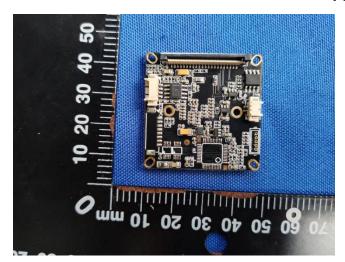
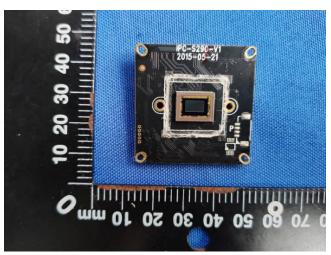



Photo 21-22 Appearance of PCB


Shenzhen HX Detect Certification Co., Ltd.


5/F, Building B15, Zongtai Cultural and Creative Industrial Park, Yintian Creative Park, Xixiang Town, Bao 'an District, Shenzhen

Page: 16 of 16

Photo 23-24 Appearance of PCB

END OF REPORT